Summary Sheet - Introduction to Chemical Reactivity, Nomenclature, Boiling Points, and Water Solubility

http://masterorganicchemistry.com

Reactant #1	Reactant #2 Product Example					Notes		The Four Types of Intermolecular Bonding in Organic Chemistry				intermolecular	Boiling point increases with strength of the intermolecular interactions.	
Alkene	Pd/C + H ₂	Alkane	H R	Pd/C, H ₂ H,	н н н У	cis addition (hydrogens go on same side of alkene)		Name	Type of Interaction	Found in	Example	·Water solubility Strength	nincreases with polarity. Notes	
Amine	Acid	Sait	_	HCI R	√⊕ ⊖ NH₃CI	amines but NOT amides (amides are <i>not</i> basic on nitrogo	en)	Ionic	Attraction between point charges	Salts	NH ₄ ⊕ _{Cl} ⊖	Strongest	gives rise to greatest water solubility (most polar) also highest boiling points	
Carboxylic acid	Base	Salt (Carboxylate salt)	0		0			Hydrogen Bonding	Attraction between positively charged H and negatively charge	Water, alcohols carboxylic acids d amides, amines	H,O,H H,O,H	2nd strongest	2nd greatest for effect on water solubility and boiling	
Carboxylic acid	Alcohol, acid, heat	Ester	R [⊥] OH	MeOH H₂SO₄, Δ	R OMe	Alcohols used as solvent		.	O, N or F.		ο Ο ∐ δ+		points	
Ester	Water, acid, heat	Carboxylic acid	R OMe	H ₂ O H ₂ SO ₄ , Δ	РОН	This is the reverse of the above reaction. Here we use water as solvent.		Dipole- Dipole	Attraction between dipole moments caused by differences in electronegativity	ketones, aldehydes esters, alkyl halides etc any molecule with a strongly electronegative element (O, N, F, C	δ, Ο΄ δ-	2nd weakest	Increases as electronegativity difference increases 3rd greatest for effect on water solubility and boiling points	
Ester	Water, base	Carboxylic acid	R OMe	H ₂ O NaOH	R OH	This is called ester hydrolysis or saponification		Van Der Waals (London forces)	Attraction between temporary dipoles	Hydrocarbons	Name	Weakest	Increases with surface area (increasing length of carbon chains) worst for water solubility (least polar)	
													best for solubility in non-polar solvents (e.g. pentane)	
Alkene	Water, acid	Alcohol	R CH2	HCI H₂O R	OH C ^H H ₂	alcohol forms on most substituted carbon (Markovnikoff rule) proceeds through carbocation	# Carbo	ons Root Meth-	Functiona R-	Alkyl		Example	Name Pentane	
			R	F	3 0	halide adds to most	2	Eth- Prop-	–OH	Hydroxyl		○ OH	Pentanol or pentyl alcohol	
Alkene	Strong acid	Alkyl halide	R ∕CH2	HCI R CI H	substituted carbon (Markovnikoff rule) proceeds through carbocation	4	But-	–CI, –Br, –	F, -I Halide		∕∕∕ CI	Pentyl chloride		
							5	Pent- Hex-	−NH ₂	Amine Ether		NH ₂	Pentylamine Pentyl methyl ether	
Alkene	Br ₂	Dibromide	R^{R}	Br ₂	R _H	Results in trans product	7	Hept-				^^°	, ,	
				K _o CrO-	R		8	Oct-	-SH \/	Thiol		SH	Pentane thiol	
Alcohol	(pr OF	rboxylic acid imary alcohol) R ketone		$\frac{H_2CrO_7}{H_2O} \rightarrow I$	OH OH		9	Non- Dec-)c=c(}	Alkene		0	Pentene	
	(se	condary alcohol	•	H K ₂ CrO ₇ → H ₂ O	R 	Note that secondary alcohols	\sim		0. R-C-H	Aldehyde		о Н	Pentanal	
			R Y	H ₂ O	R R	stop at the ketone stage	Primary carb carbon atom	on: attached to Ol	NE R-Ö-R O	Ketone	`	Me O	Butyl methyl ketone OR 2-pentanone	
Alcohol		boxylic acid	B√_OF	H ₂ O R	R L_O		Secondary: a carbon atoms	ittached to TWO s	R ^{-C} -oH	Carboxyli acid	c \	ОН	Pentanoic acid	
	(рп	mary alcohol)		H ₂ O	OH OH		carbon atoms	_	O II R ^{-C} -OR	Ester	_	OMe	Methyl pentanoate	
Alkane	Cl ₂ , hv (or peroxides)	Alkyl chloride	R∕ Me	—— —	R CCI3	Free-radical reaction (number of new C–Cl bonds depends on # of equivalents)	Quaternary: a carbon atoms	attached to FOUR s	O II R ^{-C} -NH ₂	Amide	_	NHMe	N-methyl pentamide	
Benzene derivative	Br ₂ , FeCl ₃	Aryl bromide	R	Br ₂ , FeBr ₃	R Br	Also gives 1,4 (para) product but never 1,3 (meta) product	Othe	OH Salah Januar Ja Januar Ja Ja Ja Ja Ja Ja Ja Ja Ja Ja Ja Ja Ja	Trans	ember R Cis			Copyright 2012 James A.Ashenhurst Aug 2012, version 1.1 james@masterorganicchemistry .com	
Thiol	"Oxidant"	Disulfide	R-SH		RS-SR		(e.g. pheny bromide)	l e.g. isopropa	nol	1,2 ortho	1,3 me	ta 1,4 para		