• Home
  • Blog
  • Online Tutoring
  • Reaction Guide
  • Study Guides
  • About
  • Members Login

Master Organic Chemistry

  • New? Start Here
  • Study And Exam Tips
  • Organic 1 Index
  • Organic 2 Index
  • Free “Cheat Sheets”
  • Feedback

Beckmann Rearrangement

Description: The Beckmann rearrangement is a reaction of oximes that can result in either amides or nitriles, depending on the starting material. (Oximes derived from ketones form amides; oximes derived from aldehydes form nitriles) 1-headerNotes: Note that the first step (formation of the oxime) is technically not part of of the Beckmann rearrangement. The Beckmann is the rearrangement of the oxime to the amide. This is generally achieved through conversion of the oxime oxygen to a good leaving group, followed by heat, which results in an alkyl (or hydride) shift, breaking the weak N-O bond. The second step involves trapping of the carbon with water (forming an amide) or, if a hydride shift occurred, deprotonation of nitrogen to give a nitrile. Examples: 2-examples Notes: The Beckmann rearrangement is achieved by converting the oxygen of the oxime to a good leaving group, and then heating. In the first example, treatment of the ketone with NH2OH forms the oxime, and then in step 2, heating with acid leads to the Beckmann rearrangement. In the second example, after formation of the oxime, it is treated with Ac2O (converting the oxime oxygen to an acetate, a better leaving group than OH) and then heating. The third example is a Beckmann rearrangement on an oxime derived from an aldehyde, which results in a nitrile. Mechanism: The first step in the process is formation of an oxime from the aldehyde or ketone, which occurs in a sequence similar to formation of imines and hydra zones. In the first step, the nitrogen adds to the carbonyl carbon (Step 1, arrows A and B) followed by proton transfer (Step 2, arrows C and D). Then, the lone pair of nitrogen displaces the hydroxide in an elimination reaction (Step 3, arrows E and F) and finally the nitrogen is deprotonated by base (Step 4, arrows G and H) to give the oxime. 3-a-mech-oxime   In the Beckmann rearrangement step, the oxime oxygen is protonated by acid (Step 1, arrows A and B). This leads to formation of OH2+, which is a much better leaving group than OH . Now comes the key step, rearrangement. The C-C bond breaks, migrating to the nitrogen, forming a new C-N bond and displacing the water as a leaving group (Step 2, arrows C and D). This forms a free carbocation, which is then attacked by water (Step 3, arrow E). The positively charged oxygen is deprotonated by base (Step 4, arrows F and G) to give the tautomer of the amide. Steps 5 and 6 represent “tautomerization”. First, protonation occurs at nitrogen (Step 5, arrows H, I and J), followed by deprotonation of oxygen (Step 6, arrows K and L). This gives the amide. 3-b-mech-beckman    Notes: The key rearrangement step (Step 2) is similar to the rearrangement step in other rearrangement reactions (such as hydride and alkyl shifts, as well as the Curtius, Schmidt, and Wolff rearrangements). This is an alkyl shift, accompanied by loss of the leaving group.

The purpose of the acid is to make the oxygen a better leaving group; the O-N bond is weak.

Note that although HOSO3- is shown as the base here, it’s very possible that other species can act as the base. Also, the ‘proton transfer’ step shown in oxime formation can be shown as two different steps, instead of the one.

For nitrile formation, the key step is a hydride shift, followed by deprotonation of the nitrogen. This gives the nitrile.

3-c-aldehyde

Comments

  1. vedangi says

    April 7, 2016 at 11:01 pm

    In one of the Beckmann rearrangement questions the reagent given was NH2OH.HCl , PCl5 and heat. What does PCl5 do?

    Reply
    • James says

      April 18, 2016 at 3:55 pm

      Same function as acid. Makes the OH into a good leaving group.

      Reply
      • AJ Thevel says

        May 3, 2017 at 10:38 pm

        Does SOCl2 do the same function?

        Reply
        • Palak says

          January 29, 2018 at 3:12 am

          You can use instead of Acid (H2SO4 ,HCl ) —-PCl5 , SOCl2 , BF3 , POCl3 , SO3 . These all have same functions.

          Reply
        • Jay says

          March 8, 2018 at 11:33 pm

          Even PCl3 , PCl5 , SOCl2 , Al2O3 , and P4O10 will do the work here !

          Reply
      • Sourav says

        August 19, 2018 at 11:20 am

        Can you please show the mech using PCl5 instead of acid

        Reply
  2. Brad English says

    July 21, 2016 at 1:45 pm

    What about NaHCO3 in this context: http://imgur.com/5JoNRNu (on an 4-chloroaninline if the image doesn’t load)

    Thank you!

    Reply
    • James says

      August 8, 2016 at 5:05 pm

      Hi Brad – NaHCO3 is just to neutralize the conjugate acid here.

      Reply
  3. Cody says

    March 2, 2017 at 1:18 pm

    In a version of this reaction in which ring expansion occurs, does it do so with the same regioselectivity as say the B.V. oxidation? By that I mean I’m under the impression that the oxygen added in expanding a ring will generally add to the more substituted side (though that may be incorrect too). Will the NH group do the same, assuming the molecule allows it to?

    My specific example is a benzyllic ketone, located on a 7-membered ring. But even just a clarification of the generalities would be amazing.

    Thank you! This site is the only thing keeping me afloat in my class, I recommend it to everybody

    Reply
  4. Jonathan says

    January 29, 2018 at 5:15 am

    Why does C atom in carbonyl react with nitrogen in hydroxylamine, not oxygen ? Can you explain it to me ?

    Reply
    • James says

      August 29, 2018 at 12:57 pm

      Nitrogen is generally more nucleophilic than oxygen, and nitrogen is even more nucleophilic when there is an adjacent heteroatom such as oxygen. See https://www.masterorganicchemistry.com/2018/05/07/nucleophilicity-of-amines/

      Reply
  5. Mariane says

    February 6, 2018 at 12:55 pm

    What’s the difference between using NH2OH and its acid salt NH2OH.HCl in the formation of the oxime?

    Reply
    • James says

      February 8, 2018 at 12:41 pm

      None, but with the HCl salt, you’ll need an equivalent of weak base to neutralize the HCl salt so that the lone pair on the nitrogen can be freed up.

      Reply

Leave a Reply to James Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Copyright © 2019 · MasterOrganicChemistry.com · All Rights Reserved
Organic Chemistry Is Awesome