Master Organic Chemistry Reaction Guide

Deprotonation of alcohols to give alkoxides

Description: Treatment of alcohols with bases give their conjugate bases, called alkoxy ions (alkoxides)
Content available for Reactionguide members only. Not a member? Get access for about 30 cents / day!

Comments

Comment section

8 thoughts on “Deprotonation of alcohols to give alkoxides

  1. In Example 2, you have a potassium ion above your reaction arrow, yet you have a sodium ion in your products. It is completely irrelevant for the reaction, just different spectator, but just thought you should know.

  2. There was a question on one of my practice exams that asked “which base will not fully deprotonate an alkyl alcohol?”

    So I take it is NaOH because of the pKa similarity, but I don’t really understand what it means to “not fully deprotonate”

    1. Hey Sarah – thanks for writing. I think a better way of writing it is “to not irreversibly deprotonate”. In other words, once the acid base reaction occurs, there is no equilibrium between the new acid [the conjugate acid of the base] and the new base [conjugate base of the acid]

      For example in the reaction
      CH3OH + NaOH —> CH3O- + H2O
      there can still be an acid-base reaction between the base [CH3O-] and acid [H2O] formed in this reaction [in other words it is in equilibrium]

      but in the reaction
      CH3OH + CH3Li —> CH3O- + CH3-CH3
      there is no acid base eaction between the base [CH3O-] and acid [CH3CH3] formed here – it is an irreversible acid-base reaction.

      I agree that “completely deprotonated” is confusing because of course in any individual reaction the molecule is completely deprotonated. The issue is wherther ALL of the molecules are irreversibly deprotonated.

      Does that make sense?

      James

      1. I do not understand the equation CH3OH + CH3Li —> CH3O- + CH3-CH3. Is it balanced? It would seem that CH3OH deprotonated would yield CH4 as the other product.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.