Pointers on Free Radical Reactions
- “Initial Tails” and “Final Heads”
- 3 Ways To Make OH A Better Leaving Group
- A Simple Formula For 7 Important Aldehyde/Ketone Reactions
- Acetoacetic
- Acids (Again!)
- Activating and Deactivating
- Actors In Every Acid Base Reaction
- Addition – Elimination
- Addition Pattern 1 – Carbocations
- Addition pattern 2 – 3 membered rings
- Addition Reactions
- Aldehydes And Ketones – Addition
- Alkene Pattern #3 – The “Concerted” Pathway
- Alkyl Rearrangements
- Alkynes – 3 Patterns
- Alkynes: Deprotonation and SN2
- Amines
- Aromaticity: Lone Pairs
- Avoid These Resonance Mistakes
- Best Way To Form Amines
- Bulky Bases
- Carbocation Stability
- Carbocation Stability Revisited
- Carboxylic Acids are Acids
- Chair Flips
- Cis and Trans
- Conformations
- Conjugate Addition
- Curved Arrow Refresher
- Curved Arrows
- Decarboxylation
- Determining Aromaticity
- Diels Alder Reaction – 1
- Dipoles: Polar vs. Covalent Bonding
- E2 Reactions
- Electronegativity Is Greed For Electrons
- Electrophilic Aromatic Substitution – Directing Groups
- Elimination Reactions
- Enantiocats and Diastereocats
- Enolates
- Epoxides – Basic and Acidic
- Evaluating Resonance Forms
- Figuring Out The Fischer
- Find That Which Is Hidden
- Formal Charge
- Frost Circles
- Gabriel Synthesis
- Grignards
- Hofmann Elimination
- How Acidity and Basicity Are Related
- How Are These Molecules Related?
- How Stereochemistry matters
- How To Stabilize Negative Charge
- How To Tell Enantiomers From Diastereomers
- Hybridization
- Hybridization Shortcut
- Hydroboration
- Imines and Enamines
- Importance of Stereochemistry
- Intermolecular Forces
- Intro to Resonance
- Ketones on Acid
- Kinetic Thermodynamic
- Making Alcohols Into Good Leaving Groups
- Markovnikov’s rule
- Mechanisms Like Chords
- Mish Mashamine
- More On The E2
- Newman Projections
- Nucleophiles & Electrophiles
- Nucleophilic Aromatic Substitution
- Nucleophilic Aromatic Substitution 2
- Order of Operations!
- Oxidation And Reduction
- Oxidative Cleavage
- Paped
- Pi Donation
- Pointers on Free Radical Reactions
- Protecting Groups
- Protecting Groups
- Proton Transfer
- Putting it together (1)
- Putting it together (2)
- Putting it together (3)
- Putting the Newman into ACTION
- Reaction Maps
- Rearrangements
- Recognizing Endo and Exo
- Redraw / Modify
- Robinson Annulation
- Robinson Annulation Mech
- Sigma and Pi Bonding
- SN1 vs SN2
- sn1/sn2 – Putting It Together
- sn1/sn2/e1/e2 – Exceptions
- sn1/sn2/e1/e2 – Nucleophile
- sn1/sn2/e1/e2 – Solvent
- sn1/sn2/e1/e2 – Substrate
- sn1/sn2/e1/e2 – Temperature
- Stereochemistry
- Strong Acid Strong Base
- Strong And Weak Oxidants
- Strong and Weak Reductants
- Stronger Donor Wins
- Substitution
- Sugars (2)
- Synthesis (1) – “What’s Different?”
- Synthesis (2) – What Reactions?
- Synthesis (3) – Figuring Out The Order
- Synthesis Part 1
- Synthesis Study Buddy
- Synthesis: Walkthrough of A Sample Problem
- Synthesis: Working Backwards
- t-butyl
- Tautomerism
- The 4 Actors In Every Acid-Base Reaction
- The Claisen Condensation
- The E1 Reaction
- The Inflection Point
- The Meso Trap
- The Michael Reaction
- The Nucleophile Adds Twice (to the ester)
- The One-Sentence Summary Of Chemistry
- The Second Most Important Carbonyl Mechanism
- The Single Swap Rule
- The SN1 Reaction
- The SN2 Reaction
- The Wittig Reaction
- Three Exam Tips
- Tips On Building Molecular Orbitals
- Top 10 Skills
- Try The Acid-Base Reaction First
- Two Key Reactions of Enolates
- What makes a good leaving group?
- What Makes A Good Nucleophile?
- What to expect in Org 2
- Work Backwards
- Zaitsev’s Rule
Here’s some pointers about free radical reactions
- A free radical is a species with a single unpaired electron.
- Free radical reactions are commonly initiated by light (hv), which promotes a single electron into an anti-bonding orbital, leading to homolytic cleavage.
- “Homolytic” dissociation means “same-breaking”. It’s breaking a bond and each atom gets the same number of electrons (1).
- Since they are lacking in a single electron, you can consider free radicals “electron-deficient”. So free radicals are stabilized by neighbors that can donate electrons, such as alkyl groups.
- Order of free radical stability: tertiary > secondary > primary
- Note that a less reactive radical like Br• can only “afford” to break the weakest C-H bonds (tertiary, benzylic and allylic). We say it’s “selective”, for tertiary C-H bonds, but it’s similar to the way that most people are “selective” for buying Hyundais versus BMW’s: you can only buy what you can afford.
There are 3 steps in every free-radical reaction. Here it’s outlined for free radical chlorination of alkanes.
- The first step: initiation, where the number of free radicals increases. This is where light (or heat, or peroxides in some cases) causes the homolytic dissociation. Note that at any given time the concentration of free radicals are small (this reaction doesn’t go to completion).
- The second steps (there are two!).
- Propagation step 1, where the radical removes hydrogen from the alkane giving the free radical. Note that the number of free radicals on each side of the equation is the same.
- Propagation step 2, where the carbon radical then attacks Cl2, forming C-Cl and giving a new Cl radical.
A common mistake is to draw the second propagation step to form the C-Cl bond as between a carbon radical and a Cl radical. This is actually the last step, termination! Note that here the number of free radicals goes down from 2 in the starting material to 0 in the product.
Thanks for reading! James
PS – for a video I made on free radical chlorination (as well as the page in the Reaction Guide) – see here