Tips On Building Molecular Orbitals
- “Initial Tails” and “Final Heads”
- 3 Ways To Make OH A Better Leaving Group
- A Simple Formula For 7 Important Aldehyde/Ketone Reactions
- Acetoacetic
- Acids (Again!)
- Activating and Deactivating
- Actors In Every Acid Base Reaction
- Addition – Elimination
- Addition Pattern 1 – Carbocations
- Addition pattern 2 – 3 membered rings
- Addition Reactions
- Aldehydes And Ketones – Addition
- Alkene Pattern #3 – The “Concerted” Pathway
- Alkyl Rearrangements
- Alkynes – 3 Patterns
- Alkynes: Deprotonation and SN2
- Amines
- Aromaticity: Lone Pairs
- Avoid These Resonance Mistakes
- Best Way To Form Amines
- Bulky Bases
- Carbocation Stability
- Carbocation Stability Revisited
- Carboxylic Acids are Acids
- Chair Flips
- Cis and Trans
- Conformations
- Conjugate Addition
- Curved Arrow Refresher
- Curved Arrows
- Decarboxylation
- Determining Aromaticity
- Diels Alder Reaction – 1
- Dipoles: Polar vs. Covalent Bonding
- E2 Reactions
- Electronegativity Is Greed For Electrons
- Electrophilic Aromatic Substitution – Directing Groups
- Elimination Reactions
- Enantiocats and Diastereocats
- Enolates
- Epoxides – Basic and Acidic
- Evaluating Resonance Forms
- Figuring Out The Fischer
- Find That Which Is Hidden
- Formal Charge
- Frost Circles
- Gabriel Synthesis
- Grignards
- Hofmann Elimination
- How Acidity and Basicity Are Related
- How Are These Molecules Related?
- How Stereochemistry matters
- How To Stabilize Negative Charge
- How To Tell Enantiomers From Diastereomers
- Hybridization
- Hybridization Shortcut
- Hydroboration
- Imines and Enamines
- Importance of Stereochemistry
- Intermolecular Forces
- Intro to Resonance
- Ketones on Acid
- Kinetic Thermodynamic
- Making Alcohols Into Good Leaving Groups
- Markovnikov’s rule
- Mechanisms Like Chords
- Mish Mashamine
- More On The E2
- Newman Projections
- Nucleophiles & Electrophiles
- Nucleophilic Aromatic Substitution
- Nucleophilic Aromatic Substitution 2
- Order of Operations!
- Oxidation And Reduction
- Oxidative Cleavage
- Paped
- Pi Donation
- Pointers on Free Radical Reactions
- Protecting Groups
- Protecting Groups
- Proton Transfer
- Putting it together (1)
- Putting it together (2)
- Putting it together (3)
- Putting the Newman into ACTION
- Reaction Maps
- Rearrangements
- Recognizing Endo and Exo
- Redraw / Modify
- Robinson Annulation
- Robinson Annulation Mech
- Sigma and Pi Bonding
- SN1 vs SN2
- sn1/sn2 – Putting It Together
- sn1/sn2/e1/e2 – Exceptions
- sn1/sn2/e1/e2 – Nucleophile
- sn1/sn2/e1/e2 – Solvent
- sn1/sn2/e1/e2 – Substrate
- sn1/sn2/e1/e2 – Temperature
- Stereochemistry
- Strong Acid Strong Base
- Strong And Weak Oxidants
- Strong and Weak Reductants
- Stronger Donor Wins
- Substitution
- Sugars (2)
- Synthesis (1) – “What’s Different?”
- Synthesis (2) – What Reactions?
- Synthesis (3) – Figuring Out The Order
- Synthesis Part 1
- Synthesis Study Buddy
- Synthesis: Walkthrough of A Sample Problem
- Synthesis: Working Backwards
- t-butyl
- Tautomerism
- The 4 Actors In Every Acid-Base Reaction
- The Claisen Condensation
- The E1 Reaction
- The Inflection Point
- The Meso Trap
- The Michael Reaction
- The Nucleophile Adds Twice (to the ester)
- The One-Sentence Summary Of Chemistry
- The Second Most Important Carbonyl Mechanism
- The Single Swap Rule
- The SN1 Reaction
- The SN2 Reaction
- The Wittig Reaction
- Three Exam Tips
- Tips On Building Molecular Orbitals
- Top 10 Skills
- Try The Acid-Base Reaction First
- Two Key Reactions of Enolates
- What makes a good leaving group?
- What Makes A Good Nucleophile?
- What to expect in Org 2
- Work Backwards
- Zaitsev’s Rule
Molecular orbitals give students a lot of trouble. Here’s some tips on how they work.
- adjacent p orbitals overlap to build up larger “pi systems” (so long as they’re oriented in the same plane).
- the lowest energy pi system will have always have all its p orbitals lined up the same way.
- The number of molecular orbitals corresponds to the number of adjacent p orbitals (i.e. number of atoms in conjugation). So ethene, for instance, has 2 p orbitals and 2 molecular orbitals. Butadiene has 4 p orbitals in conjugation and 4 energy levels.
- the “color” of the lobe indicates the “sign” of the wave (think of a wave with positive or negative amplitude).
- Adjacent lobes with the same sign will have “constructive interference”. Like two waves with the same sign, they will combine to form a larger wave.
- Adjacent lobes with opposite signs will have “destructive interference”.
- Between adjacent lobes with opposite signs is an area where the “sign” (amplitude) of the wave is zero. This is called a node.
- The more nodes an orbital has, the higher in energy it will be (less “stable”). On the right hand diagram, notice how the energy increases with the number of nodes (0, 1, 2, 3)
- Each orbital can fit two electrons, and the lowest energy orbital is filled first (this is the “building up principle” or “Aufbau principle”.).
P.S. The three-orbital case often throws people off… notice that the second energy level has a node right on top of the carbon. This means there is zero electron density on this atom. Don’t worry too much if this seems weird: for our purposes, the consequences of this are not so important.
P.P.S. Also note that we can’t put the nodes just “anywhere”, but that they are arranged symmetrically around the center of the Pi system. The reason for this is not crucially important for our purposes, but comes from properties of the Schrodinger wave equation (the equation produces symmetrical waves)
Questions? Leave a comment!