Organic Reagents
Reagent Friday: Lindlar’s Catalyst
Last updated: February 21st, 2020 |
Lindlar’s Catalyst For The Partial Reduction Of Alkynes To cis-Alkenes
In a blatant plug for the Reagent Guide, each Friday I profile a different reagent that is commonly encountered in Org 1/ Org 2. Version 1.2 just got released, with a host of corrections and a new page index.
One thing that’s useful to keep in mind as you learn about reagents is that there are some reagents that will only descend (or ascend) one rung of the oxidation ladder at a time. Last week, it was sodium borohydride, which reduces aldehydes and ketones but doesn’t touch esters. This week, it’s Lindlar’s catalyst, which reduces alkynes, and stops at the alkene.
What it’s used for: the Lindlar catalyst is a “poisoned” metal catalyst that performs hydrogenations of alkynes in the presence of hydrogen gas (H2). By “poisoned” we mean that it lacks the normal activity associated with palladium catalysts for reducing double bonds. This is useful because sometimes we’d like to start with an alkyne and go down one “rung” of the oxidation ladder to an alkene. But if you use normal palladium on carbon, you’ll get full reduction to the alkane.
Lindlar’s catalyst is a palladium catalyst poisoned with traces of lead and quinoline, that reduce its activity such that it can only reduce alkynes, not alkenes. It always gives the cis-alkene, in contrast to Na/NH3, which gives the trans alkenes. Lindlar’s catalyst doesn’t really have a “structure”. Like Raney nickel, it’s basically a metal that has been modified in a very particular way to provide a certain desirable set of properties. Sometimes you might see it written as Pd-CaCO3-PbO2, but it’s usually just written “Lindlar”.
Similar or the same as: There’s a whole family of poisoned catalysts that are similar. You might also see Ni–B (nickel boride), Pd-CaCO3, palladium on barium sulfate, Pd-CaCO3-quinoline and others enlisted to do the same task.
Reduction Of Alkynes To cis-Alkenes With Lindlar’s Catalyst
Examples: Reduction of alkynes to cis-alkenes
See more applications of this reaction in this post: Partial Reduction of Alkynes
How it works
It is thought that the role of lead (Pb) is to reduce the amount of H2 absorbed, while quinoline helps avoid the formation of unwanted byproducts, but it’s hard to be more specific than that. A discussion of how Lindlar’s catalyst works would be a good thing to ask a surface chemist like Gerhard Ertl. You can see a procedure for making the Lindlar catalyst here.
P.S. You can read about the chemistry of Lindlar’s catalyst and more than 80 other reagents in undergraduate organic chemistry in the “Organic Chemistry Reagent Guide”, available here as a downloadable PDF.
Further Reading
- Ein neuer Katalysator für selektive Hydrierungen
H. Lindlar
Helv. Chim. Acta 1952 35 (2), 446
DOI: 10.1002/hlca.19520350205
The original paper by Lindlar describing the development of a new catalyst for the selective hydrogenation of alkynes to Z-alkenes during Vitamin A synthesis. - PALLADIUM CATALYST FOR PARTIAL REDUCTION OF ACETYLENES
H. Lindlar, R. Dubuis
Org. Synth. 1966, 46, 89
DOI: 10.15227/orgsyn.046.0089
This procedure by Lindlar also gives a detailed preparation of the catalyst. - A density functional theory study of the ‘mythic’ Lindlar hydrogenation catalyst
Garcı´a-Mota, J. Gomez-Dı´az, G. Novell-Leruth, C. Vargas-Fuentes, L. Bellarosa, B. Bridier, J. Pe´rez-Ramı´rez, N. Lo´pez
Theor. Chem. Acc. 2011, 128, 663
DOI: 10.1021/s00214-010-0800-0
This is a computational investigation using DFT (density functional theory) which studies how the various components in the Lindlar catalyst (Pd, Pb, quinoline) pack together and how that contributes to hydrogenation selectivity. - (Z)-4-(TRIMETHYLSILYL)-3-BUTEN-1-OL
L.E. Overman, M. J. Brown, S. F. McCann
Org. Synth. 1990, 68, 182
DOI: 10.15227/orgsyn.068.0182
The second reaction in this 2-step synthesis is a Lindlar hydrogenation to give the Z-alkene. - SYNTHETICALLY USEFUL REACTIONS WITH NICKEL BORIDE. A REVIEW
Jitender M. Khurana, Amita Gogia.
Organic Preparations and Procedures International The New Journal for Organic Synthesis
DOI: 1080/00304949709355171
This is a review on the application of nickel boride in organic synthesis, which can be used in similar applications to Lindlar’s catalyst.
It is great. Hw can i get d book from the internet?
Here! http://masterorganicchemistry.myshopify.com/
Could it be that quinoline helps at inhibiting polymerization?
James, Will the lindlar reduce a ketone on a ring with one double bond? I want to reduce the double bond in the ring but maintain the ketone FG.
hey there,
can someone explain why the product alkene is always in cis conformation?
The 2 hydrogen atoms are added from the same side. The addition is cis addition.
because hydrogen is first adsorbed on metal surface and then transferred to the double bond (which is also held on metal surface facing one face towards metal surface) one by one from the same face.
Why does H2/Lindlar’s catalyst lead to only cis products?
Generally, hydrogenation leads to “cis” products (actually “syn addition”) because the substrate must be adsorbed on the surface of the late metal catalyst and the hydrogen atoms are delivered on the same face.
Why is a palladium based catalyst used more industrially, for Acetylene partial hydrogenation than Lindlar’s catalyst?
Lindlar’s catalyst is a palladium based catalyst.
Is this catalyst powerful enough to reduce ketones and aldehydes to secondary and primary alcohols, respectively?
No, one would generally not use a poisoned catalyst to reduce an aldehyde and ketone. Using Pt-C or Pd-C with high pressure will do the job.