Organic Reagents

By James Ashenhurst

Reagent Friday: Lindlar’s Catalyst

Last updated: February 21st, 2020 |

Lindlar’s Catalyst For The Partial Reduction Of Alkynes To cis-Alkenes

In a blatant plug for the Reagent Guide, each Friday  I profile a different reagent that is commonly encountered in Org 1/ Org 2. Version 1.2 just got released, with a host of corrections and a new page index. 

One thing that’s useful to keep in mind as you learn about reagents is that there are some reagents that will only descend (or ascend) one rung of the oxidation ladder at a time. Last week, it was sodium borohydride, which reduces aldehydes and ketones but doesn’t touch esters. This week, it’s Lindlar’s catalyst, which reduces alkynes, and stops at the alkene.

What it’s used for: the Lindlar catalyst is a “poisoned” metal catalyst that performs hydrogenations of alkynes in the presence of hydrogen gas (H2). By “poisoned” we mean that it lacks the normal activity associated with palladium catalysts for reducing double bonds. This is useful because sometimes we’d like to start with an alkyne and go down one “rung” of the oxidation ladder to an alkene. But if you use normal palladium on carbon, you’ll get full reduction to the alkane.

Lindlar’s catalyst is a palladium catalyst poisoned with traces of lead and quinoline, that reduce its activity such that it can only reduce alkynes, not alkenes. It always gives the cis-alkene, in contrast to Na/NH3, which gives the trans alkenes. Lindlar’s catalyst doesn’t really have a “structure”. Like Raney nickel, it’s basically a metal that has been modified in a very particular way to provide a certain desirable set of properties. Sometimes you might see it written as Pd-CaCO3-PbO2, but it’s usually just written “Lindlar”.

Similar or the same as: There’s a whole family of poisoned catalysts that are similar. You might also see Ni–B (nickel boride),  Pd-CaCO3, palladium on barium sulfate, Pd-CaCO3-quinoline and others enlisted to do the same task.

Reduction Of Alkynes To cis-Alkenes With Lindlar’s Catalyst

Examples: Reduction of alkynes to cis-alkenes


See more applications of this reaction in this post: Partial Reduction of Alkynes 

How it works

It is thought that the role of lead (Pb) is to reduce the amount of H2 absorbed, while quinoline helps avoid the formation of unwanted byproducts, but it’s hard to be more specific than that. A discussion of how Lindlar’s catalyst works would be a good thing to ask a surface chemist like Gerhard Ertl.  You can see a procedure for making the Lindlar catalyst here.

P.S. You can read about the chemistry of Lindlar’s catalyst and more than 80 other reagents in undergraduate organic chemistry in the “Organic Chemistry Reagent Guide”, available here as a downloadable PDF.

Further Reading

  1. Ein neuer Katalysator für selektive Hydrierungen
    H. Lindlar
    Helv. Chim. Acta 1952 35 (2), 446
    DOI: 10.1002/hlca.19520350205
    The original paper by Lindlar describing the development of a new catalyst for the selective hydrogenation of alkynes to Z-alkenes during Vitamin A synthesis.
    H. Lindlar, R. Dubuis
    Org. Synth. 1966, 46, 89
    DOI: 10.15227/orgsyn.046.0089
    This procedure by Lindlar also gives a detailed preparation of the catalyst.
  3. A density functional theory study of the ‘mythic’ Lindlar hydrogenation catalyst
    Garcı´a-Mota, J. Gomez-Dı´az, G. Novell-Leruth, C. Vargas-Fuentes, L. Bellarosa, B. Bridier, J. Pe´rez-Ramı´rez, N. Lo´pez
    Theor. Chem. Acc. 2011, 128, 663
    DOI: 10.1021/s00214-010-0800-0
    This is a computational investigation using DFT (density functional theory) which studies how the various components in the Lindlar catalyst (Pd, Pb, quinoline) pack together and how that contributes to hydrogenation selectivity.
    L.E. Overman, M. J. Brown, S. F. McCann
    Org. Synth. 1990, 68, 182
    DOI: 10.15227/orgsyn.068.0182
    The second reaction in this 2-step synthesis is a Lindlar hydrogenation to give the Z-alkene.
    Jitender M. Khurana, Amita Gogia.
    Organic Preparations and Procedures International The New Journal for Organic Synthesis
    DOI: 1080/00304949709355171
    This is a review on the application of nickel boride in organic synthesis, which can be used in similar applications to Lindlar’s catalyst.


Comment section

13 thoughts on “Reagent Friday: Lindlar’s Catalyst

  1. Is this catalyst powerful enough to reduce ketones and aldehydes to secondary and primary alcohols, respectively?

  2. Why is a palladium based catalyst used more industrially, for Acetylene partial hydrogenation than Lindlar’s catalyst?

    1. Generally, hydrogenation leads to “cis” products (actually “syn addition”) because the substrate must be adsorbed on the surface of the late metal catalyst and the hydrogen atoms are delivered on the same face.

    1. because hydrogen is first adsorbed on metal surface and then transferred to the double bond (which is also held on metal surface facing one face towards metal surface) one by one from the same face.

  3. James, Will the lindlar reduce a ketone on a ring with one double bond? I want to reduce the double bond in the ring but maintain the ketone FG.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.