Curved Arrow Refresher
- “Initial Tails” and “Final Heads”
- 3 Ways To Make OH A Better Leaving Group
- A Simple Formula For 7 Important Aldehyde/Ketone Reactions
- Acetoacetic
- Acids (Again!)
- Activating and Deactivating
- Actors In Every Acid Base Reaction
- Addition – Elimination
- Addition Pattern 1 – Carbocations
- Addition pattern 2 – 3 membered rings
- Addition Reactions
- Aldehydes And Ketones – Addition
- Alkene Pattern #3 – The “Concerted” Pathway
- Alkyl Rearrangements
- Alkynes – 3 Patterns
- Alkynes: Deprotonation and SN2
- Amines
- Aromaticity: Lone Pairs
- Avoid These Resonance Mistakes
- Best Way To Form Amines
- Bulky Bases
- Carbocation Stability
- Carbocation Stability Revisited
- Carboxylic Acids are Acids
- Chair Flips
- Cis and Trans
- Conformations
- Conjugate Addition
- Curved Arrow Refresher
- Curved Arrows
- Decarboxylation
- Determining Aromaticity
- Diels Alder Reaction – 1
- Dipoles: Polar vs. Covalent Bonding
- E2 Reactions
- Electronegativity Is Greed For Electrons
- Electrophilic Aromatic Substitution – Directing Groups
- Elimination Reactions
- Enantiocats and Diastereocats
- Enolates
- Epoxides – Basic and Acidic
- Evaluating Resonance Forms
- Figuring Out The Fischer
- Find That Which Is Hidden
- Formal Charge
- Frost Circles
- Gabriel Synthesis
- Grignards
- Hofmann Elimination
- How Acidity and Basicity Are Related
- How Are These Molecules Related?
- How Stereochemistry matters
- How To Stabilize Negative Charge
- How To Tell Enantiomers From Diastereomers
- Hybridization
- Hybridization Shortcut
- Hydroboration
- Imines and Enamines
- Importance of Stereochemistry
- Intermolecular Forces
- Intro to Resonance
- Ketones on Acid
- Kinetic Thermodynamic
- Making Alcohols Into Good Leaving Groups
- Markovnikov’s rule
- Mechanisms Like Chords
- Mish Mashamine
- More On The E2
- Newman Projections
- Nucleophiles & Electrophiles
- Nucleophilic Aromatic Substitution
- Nucleophilic Aromatic Substitution 2
- Order of Operations!
- Oxidation And Reduction
- Oxidative Cleavage
- Paped
- Pi Donation
- Pointers on Free Radical Reactions
- Protecting Groups
- Protecting Groups
- Proton Transfer
- Putting it together (1)
- Putting it together (2)
- Putting it together (3)
- Putting the Newman into ACTION
- Reaction Maps
- Rearrangements
- Recognizing Endo and Exo
- Redraw / Modify
- Robinson Annulation
- Robinson Annulation Mech
- Sigma and Pi Bonding
- SN1 vs SN2
- sn1/sn2 – Putting It Together
- sn1/sn2/e1/e2 – Exceptions
- sn1/sn2/e1/e2 – Nucleophile
- sn1/sn2/e1/e2 – Solvent
- sn1/sn2/e1/e2 – Substrate
- sn1/sn2/e1/e2 – Temperature
- Stereochemistry
- Strong Acid Strong Base
- Strong And Weak Oxidants
- Strong and Weak Reductants
- Stronger Donor Wins
- Substitution
- Sugars (2)
- Synthesis (1) – “What’s Different?”
- Synthesis (2) – What Reactions?
- Synthesis (3) – Figuring Out The Order
- Synthesis Part 1
- Synthesis Study Buddy
- Synthesis: Walkthrough of A Sample Problem
- Synthesis: Working Backwards
- t-butyl
- Tautomerism
- The 4 Actors In Every Acid-Base Reaction
- The Claisen Condensation
- The E1 Reaction
- The Inflection Point
- The Meso Trap
- The Michael Reaction
- The Nucleophile Adds Twice (to the ester)
- The One-Sentence Summary Of Chemistry
- The Second Most Important Carbonyl Mechanism
- The Single Swap Rule
- The SN1 Reaction
- The SN2 Reaction
- The Wittig Reaction
- Three Exam Tips
- Tips On Building Molecular Orbitals
- Top 10 Skills
- Try The Acid-Base Reaction First
- Two Key Reactions of Enolates
- What makes a good leaving group?
- What Makes A Good Nucleophile?
- What to expect in Org 2
- Work Backwards
- Zaitsev’s Rule
A few weeks ago I said resonance was the key theme of Org 2. It’s probably a good idea at this time to go back and refresh on one of the key skills you’ll need to master for this part of the course: drawing curved resonance arrows.
Curved arrows are how we show the movement of electrons. They’re one of the two key accounting tools for organic chemistry (the other being formal charge).
Every curved arrow has a tail (the source of electrons) and a head (which is the destination of the electrons). A curved arrow says “take a pair of electrons from here (the tail) and move them there (the head)!”
We can use curved arrows to show the conversion of one resonance form into another.
There are three legal moves for a resonance curved arrow (and only 3).
- Break a pi bond and move the pair of electrons to a lone pair.
- Move a pair of electrons from a lone pair to form a new pi bond.
- Break a pi bond and move the pair of electrons to form a new pi bond.
Here they are:
Every resonance structure of a molecule can be built through a combination of these three moves. Every. Single. One.
Two more iron rules for resonance structures:
- Don’t ever exceed the octet rule for C, O, N, F, etc.
- Only break Pi bonds, not single bonds.
One more key guideline:
- When breaking a Pi bond between two atoms of unequal electronegativity, it’s best to move the electrons toward the more electronegative atom.
Tomorrow: we’ll start applying curved arrows when we talk about “directing groups” in aromatic substitution reactions.
Thanks for reading! James
PS One last thing to note. Curved arrows also tell you how to change formal charge. Since electrons are moving from the tail to the head, the tail is donating electrons and the head is accepting electrons. You want to make the formal charge at the tail more positive by one (since it’s losing a negatively charged electron) and make the formal charge at the head more negative by one (since it’s adding a negatively charged electron).
PPS Further reading: In Summary – Resonance
PPPS Common Resonance Mistakes