The Wittig Reaction
- “Initial Tails” and “Final Heads”
- 3 Ways To Make OH A Better Leaving Group
- A Simple Formula For 7 Important Aldehyde/Ketone Reactions
- Acetoacetic
- Acids (Again!)
- Activating and Deactivating
- Actors In Every Acid Base Reaction
- Addition – Elimination
- Addition Pattern 1 – Carbocations
- Addition pattern 2 – 3 membered rings
- Addition Reactions
- Aldehydes And Ketones – Addition
- Alkene Pattern #3 – The “Concerted” Pathway
- Alkyl Rearrangements
- Alkynes – 3 Patterns
- Alkynes: Deprotonation and SN2
- Amines
- Aromaticity: Lone Pairs
- Avoid These Resonance Mistakes
- Best Way To Form Amines
- Bulky Bases
- Carbocation Stability
- Carbocation Stability Revisited
- Carboxylic Acids are Acids
- Chair Flips
- Cis and Trans
- Conformations
- Conjugate Addition
- Curved Arrow Refresher
- Curved Arrows
- Decarboxylation
- Determining Aromaticity
- Diels Alder Reaction – 1
- Dipoles: Polar vs. Covalent Bonding
- E2 Reactions
- Electronegativity Is Greed For Electrons
- Electrophilic Aromatic Substitution – Directing Groups
- Elimination Reactions
- Enantiocats and Diastereocats
- Enolates
- Epoxides – Basic and Acidic
- Evaluating Resonance Forms
- Figuring Out The Fischer
- Find That Which Is Hidden
- Formal Charge
- Frost Circles
- Gabriel Synthesis
- Grignards
- Hofmann Elimination
- How Acidity and Basicity Are Related
- How Are These Molecules Related?
- How Stereochemistry matters
- How To Stabilize Negative Charge
- How To Tell Enantiomers From Diastereomers
- Hybridization
- Hybridization Shortcut
- Hydroboration
- Imines and Enamines
- Importance of Stereochemistry
- Intermolecular Forces
- Intro to Resonance
- Ketones on Acid
- Kinetic Thermodynamic
- Making Alcohols Into Good Leaving Groups
- Markovnikov’s rule
- Mechanisms Like Chords
- Mish Mashamine
- More On The E2
- Newman Projections
- Nucleophiles & Electrophiles
- Nucleophilic Aromatic Substitution
- Nucleophilic Aromatic Substitution 2
- Order of Operations!
- Oxidation And Reduction
- Oxidative Cleavage
- Paped
- Pi Donation
- Pointers on Free Radical Reactions
- Protecting Groups
- Protecting Groups
- Proton Transfer
- Putting it together (1)
- Putting it together (2)
- Putting it together (3)
- Putting the Newman into ACTION
- Reaction Maps
- Rearrangements
- Recognizing Endo and Exo
- Redraw / Modify
- Robinson Annulation
- Robinson Annulation Mech
- Sigma and Pi Bonding
- SN1 vs SN2
- sn1/sn2 – Putting It Together
- sn1/sn2/e1/e2 – Exceptions
- sn1/sn2/e1/e2 – Nucleophile
- sn1/sn2/e1/e2 – Solvent
- sn1/sn2/e1/e2 – Substrate
- sn1/sn2/e1/e2 – Temperature
- Stereochemistry
- Strong Acid Strong Base
- Strong And Weak Oxidants
- Strong and Weak Reductants
- Stronger Donor Wins
- Substitution
- Sugars (2)
- Synthesis (1) – “What’s Different?”
- Synthesis (2) – What Reactions?
- Synthesis (3) – Figuring Out The Order
- Synthesis Part 1
- Synthesis Study Buddy
- Synthesis: Walkthrough of A Sample Problem
- Synthesis: Working Backwards
- t-butyl
- Tautomerism
- The 4 Actors In Every Acid-Base Reaction
- The Claisen Condensation
- The E1 Reaction
- The Inflection Point
- The Meso Trap
- The Michael Reaction
- The Nucleophile Adds Twice (to the ester)
- The One-Sentence Summary Of Chemistry
- The Second Most Important Carbonyl Mechanism
- The Single Swap Rule
- The SN1 Reaction
- The SN2 Reaction
- The Wittig Reaction
- Three Exam Tips
- Tips On Building Molecular Orbitals
- Top 10 Skills
- Try The Acid-Base Reaction First
- Two Key Reactions of Enolates
- What makes a good leaving group?
- What Makes A Good Nucleophile?
- What to expect in Org 2
- Work Backwards
- Zaitsev’s Rule
The Wittig reaction is kind of a neat, unique reaction. You won’t see other reactions like it in the course.
Here’s what it does: the Wittig reaction converts aldehydes and ketones into alkenes. So we’re breaking a C-O double bond and forming a C-C double bond.
The reaction works well because the phosphorus oxygen double bond is really strong: this reaction drives the reaction to completion.
Why is this useful? Carbon-carbon bond forming reactions are useful, because they let us stitch smaller molecules into larger ones. So definitely have this in your “synthetic toolbox” – because now you can tie in all the reactions you learned from Org 1 that involve alkenes.
Tomorrow: we’re going to cover a mechanism you’ve seen before, but give it a new name. It’ll be an important new addition to our toolbox of mechanisms.
What happens in the first step of the Wittig is that the ylide carbon attacks the carbonyl carbon, while the carbonyl oxygen attacks the phosphorus. This makes a 4 membered ring.
Next, the 4 membered ring breaks apart and we form a P-O double bond and the C-C double bond.
The reaction works well because the phosphorus oxygen double bond is really strong: this reaction drives the reaction to completion.
Why is this useful? Carbon-carbon bond forming reactions are useful, because they let us stitch smaller molecules into larger ones. So definitely have this in your “synthetic toolbox” – because now you can tie in all the reactions you learned from Org 1 that involve alkenes.
Tomorrow: we’re going to cover a mechanism you’ve seen before, but give it a new name. It’ll be an important new addition to our toolbox of mechanisms.
Thanks for reading! James
P.S. Further reading on the Reaction Guide – the Wittig Reaction